State Brief: Colorado

Background

While Colorado's energy mix is dominated by coal, the state now uses a smaller percentage of coal than was the case ten years ago. The percentage share of natural gas has largely held steady, while wind (especially) and solar development has increased. Colorado boasts one of the largest wind industries in the nation, currently employing 14,800 citizens. The state is expected to be home to the second-most wind jobs in the country, after overtaking Iowa.

The three members of the bi-partisan Colorado Public Utilities Commission (PUC) are all appointed by the governor. Recently appointed, the former director of the Colorado Energy Office, Jeff Ackermann (D) is the Chairman. Governor John Hickenlooper (D) has been in office since 2011. The split legislature features a Democratically controlled House and a Republican held Senate. In the news, Xcel Energy and Colorado solar advocates reached a settlement last summer to compromise on a number of issues. Among the compromises, Xcel's initial request for a fixed charge was replaced by a time-of-use rate pilot program and the utility will be allowed to build a 50 megawatt (MW) shared solar installation. Additionally, the solar advocacy groups will not oppose a proceeding Xcel initiated to request decoupling. That proceeding is ongoing.

Policy Strengths and Opportunities

An important framework for policymakers to consider, the notion of “policy stacking” was developed at the National Renewable Energy Laboratory (NREL). The basic idea behind policy stacking is that there is an interdependency and a sequencing of state policy that, when done effectively, can yield greater market certainty, private sector investment, and likelihood of achieving stated public policy objectives.

In theory, but not always in practice, clean energy policies can be categorized into one of three tiers of the policy stack. Tier 1, Market Preparation Policies, remove technical, legal, regulatory, and infrastructure-related barriers to clean energy technology adoption. Tier 2, Market Creation Policies, create a market and/or signal state support for clean energy technologies. Tier 3, Market Expansion Policies, create incentives and other programs in order to expand an existing clean energy market by encouraging or facilitating technology uptake by additional market participants.

A simple example, before financial incentives for combined heat and power (CHP) will be successful, two key considerations for deployment are having clear interconnection standards and favorable stand-by rates for

1 For more information on policy opportunities, please visit the SPOT for Clean Energy. For more information on specific policy actions related to these opportunities, please review the Clean Energy Policy Guide for State Legislatures.

customers who opt to add CHP. In this example, policies to address interconnection and stand-by rates should be adopted before financial incentive programs are implemented.

Grid Modernization

In the last two decades, digital technologies have been developed that enable utilities to better manage the grid and also provide opportunities for consumers to customize their services to fit their priorities. These technologies allow a two-way flow of information between the electric grid and grid operators and between utilities and their customers. Emerging technologies improve system reliability and resiliency by enabling better tracking and management of resources.

These technologies allow grid operators to incorporate central and distributed energy resources, energy storage technologies, electric vehicles, and assist in addressing the challenges associated with planning, congestion, asset utilization, and energy and system efficiency. This can make the operational side of the utility more efficient. On the customer's side of the meter, advanced metering infrastructure, dynamic pricing, and other emerging technologies allow an exchange of information and electricity between a consumer and their electric provider. Grid modernization will be associated with greater consumer choice, allowing customers to meet their energy priorities by producing their own energy or to selecting to receive innovative energy efficient or clean energy services from different providers.

Grid modernization efforts compliment other policies such as demand response policies, customer data management, smart metering infrastructure, electric vehicles, and others. Policy approaches around grid modernization should be seen as an umbrella to put in place a structure that supports and ties together these other individual policy initiatives.

In terms of state efforts to modernize the grid, Colorado has not received high marks. In the latest Grid Modernization Index, Colorado comes in at 34th overall for state support, customer engagement, and grid operations. While Colorado moved up last year in terms of state support, and recent legislation and PUC filings will move the state’s scores higher, there are supportive policies that could advance in-state grid modernization efforts.

1. Update the grid modernization strategy through a stakeholder process that incorporates the viewpoints of utility customers, utilities regulators, utilities, and other stakeholders. Colorado took steps toward a transition to a modern grid after SB 10-180. This bill created the Colorado Smart Grid Task Force, which produced “Deploying Smart Grid in Colorado”, a 2011 report with recommendations for legislators and the Public Utilities Commission (PUC). Grid modernization strategies, while recognizing regional and inter-state diversity and avoiding one-size-fits-all plans, should also take a holistic view of the electric system.

2. States may decide to mandate a ten-year grid modernization plan to be proposed by utilities to the utility commission within a specified timeframe. This mandate would include requirements for implementation by utilities within a certain amount of time. Require that plans outline a clear set of grid modernization goals and describe methods to measure, report, verify, and enforce progress towards those goals. In addition to this, states might provide incentives or cost recovery mechanisms for utilities to meet grid modernization goals.
 a. In May, Xcel went to the Colorado PUC seeking approval for a $562 million grid modernization program and, after extensive questioning, settled on a $612 million plan. The utility will roll out advanced meters and a voltage optimization system between 2019 and 2024.

3. Require that utilities’ integrated resource plans include plans to enhance cybersecurity, integrate distributed energy resources (including electric vehicles and energy storage), increase smart meter deployment, and measure and report on the results of these efforts.

4. Customer Data Access – Data access is included as a part of basic utility service, though policies could continue to be refined. Xcel Energy, the major energy provider for the most populous areas in Colorado, provides energy data usage release forms on their website. Important aspects of legislation or rules addressing access to data include the following: clarification of who owns the energy data associated with consumer energy usage; protections for customer privacy; an outline of the process for allowing third parties direct access to data; policy to promote access to the highest resolution of data by third parties.
5. Update Colorado’s Renewable Portfolio Standard (RPS). The RPS is set to expire in 2020 and the state's investor-owned utilities are expected to meet the standard ahead of schedule. The state may want to look at shifting from a technology-based standard (a renewable portfolio) to a performance-based standard (an emissions standard). An emissions standard would encourage innovation across the system by counting the contributions of demand side measures, smart grids, supply side efficiency, and the interplay of fossil generation with renewable resources. Further, it allows a competitive market to flourish toward performance of a cleaner grid.

6. Improve the state's energy storage policies. The adoption of incentives for or a mandate to integrate a certain amount of energy storage on the grid (see below) would enhance modernization efforts. Enhancing clean energy financing and electric vehicle policies (see below), also improves the chances of successful grid modernization.

Clean Energy Financing

Distributed generation (DG) provides localized generation that serves a specific part of the grid. It may include generation serving a specific residence or business, a neighborhood, or a region served by a substation. DG has the benefit of reducing stress on large transmission infrastructure by providing distribution level power (as opposed to central generation). Because small-scale renewable energy systems require large upfront investments, overcoming the upfront cost barrier is arguably the biggest challenge to clean energy deployment at the consumer level. Financing is key; and many states provide financing and financial incentives to spur adoption of these technologies.

Financing encompasses multiple potential state initiatives including green banks, credit wraps, interest rate buy downs and other common financing instruments. Colorado has a funded revolving loan policy and an active Commercial Property Assessed Clean Energy (PACE). However, despite enabling legislation, no residential PACE program exists. The Colorado Energy Office has begun talks with the Coalition for Green Capital about potential financing products.

To promote wide-spread deployment of DG, there are a handful of policy opportunities in Colorado.

1. **Residential Property Assessed Clean Energy (PACE)** – PACE is a financing mechanism used by local governments that allows property owners to finance energy efficiency and renewable energy improvements through their property tax payment. The repayment of qualified energy improvements is done via a voluntary property tax assessment collected by local governments, just as other public infrastructure investments are financed. While PACE programs can be designed for both the residential and the commercial markets, residential PACE takes a much more committed and engaged approach on the part of the state. In order to amend Colorado's existing residential PACE authorization, legislation might follow the Department of Housing and Urban Development’s (HUD) guidance for determining eligibility for Federal Housing Authority (FHA) insured mortgage financing:
 a. **Collection:** The PACE obligation is collected and secured by the creditor in the same manner as a special assessment against the property;
 b. **Enforcement:** The property may only become subject to an enforceable claim (i.e., a lien) that is superior to the mortgage for delinquent regularly scheduled PACE payments. The property shall not be subject to an enforceable claim superior to the mortgage for the full outstanding PACE obligation at any time;
 c. **Property Transfer:** There are no terms or conditions that limit the transfer of the property to a new Homerowner. Provisions to require the consent of a third-party prior to conveyance are prohibited, unless these provisions can be terminated at the option of, and with no cost to, the homeowner;
 d. **Disclosure:** The existence of a PACE obligation on a property is readily apparent to all parties to an FHA-insured mortgage transaction in the public records and must show the obligation amount, the expiration date and cause of the expiration of the assessment, and in no case, can default accelerate the expiration date.
2. **On-Bill Repayment or On-Bill Financing** – While utilities in the state have explored on-bill financing, no statewide policy exists. On-Bill Repayment (OBR) and On-Bill Financing (OBF) are mechanisms for financing residential and small commercial clean energy technologies in buildings. The source of financing is the main design component separating OBR from OBF. Financing can come from the utility (OBF), or through a private entity (OBR). In either case, the customer’s costs of retrofits or equipment are amortized and combined with savings from the measures on the utility bill. Legislation to promote OBR or OBF should include, at minimum, the following: whether “bill neutrality” – an equal or lower monthly bill post-retrofit – is required; and language authorizing the utilities commission to implement the program. Legislation may include a credit enhancement fund that encourages lending to customers that would otherwise not qualify for a loan due to a low credit score. Reducing the risk to lenders can keep interest rates lower. Legislation can tie loans together with weatherization upgrades for low-income customers.

3. **Combined Heat and Power Incentives** – Colorado offers loans, tax credits, and other incentives for solar and other DG technologies. To increase the deployment of combined heat and power, the state’s offerings could be expanded to include these technologies.

Electrification of the Transportation Sector

One of the most important barriers to increased adoption of electric vehicles (EVs) is their higher up-front cost as compared to a similar conventionally-fueled vehicle. In addition, there has been a complicated relationship between increased adoption of EVs and the availability of EV charging stations. Put simply, consumers want to be sure their car will get them where they need to go. The good news is that both supportive policies for developing charging infrastructure and technological advancements have eased “range anxiety.” For instance, the most recent GM Bolt has an estimated range of 240 miles.

While Colorado offers some grants and tax incentives for the purchase of EVs and provides a grant for the installation of publicly-available EV supply equipment (EVSE), there are policy opportunities to further encourage and prepare for increased market penetration of EVs.

1. **Charging Infrastructure Plan** – Locating charging infrastructure is different than locating conventional fueling stations. For the most part, EVs are cars used for commuting and local trips. Furthermore, while one fuels a conventional vehicle when they are going somewhere, stopping at a gas station for the specific purpose of filling up, a driver of an EV is generally looking to refuel when they are stopping somewhere: when going shopping, going into a restaurant, or going to work. Charging infrastructure plans should target these types of locations and attempt to pair the appropriate level of charging infrastructure with a reasonable amount of time a person may be stopped at that location. The Colorado Energy Office put out a very detailed [EV Market Study](#) (prepared by BCS, Incorporated) in January of 2015 with myriad best practices, recommendations, and assessments. While not a formal model plan, this document can be utilized by local governments as they develop EV charging infrastructure.

2. **Parking Infrastructure Requirements** – Legislation can set requirements for EV parking infrastructure. Some states have adopted permitting standards for parking lots, requiring, for instance, that for every 100 parking spaces, one EV charging spot must be provided.

3. **EVSE Financing and Financial Incentives** – The provision of financial incentives and innovative financing options can increase installations of charging stations. States have adopted a number of financial incentives including income and property tax credits, sales tax credits, and low-interest loans. A handful of states qualify EVSE under their property assessed clean energy (PACE) programs. One of the simpler solutions, existing tax credits and loan programs could be expanded to incentivize both residential and commercial, publicly available charging stations. The legislature could also use this money to leverage up to 15% of Colorado’s allocation from the Volkswagen Settlement ($61 million) for public charging infrastructure.
Energy Storage

Energy storage offers a unique opportunity to dynamically manage supply and demand to maximize the value of grid resources. By deploying storage in strategic locations, utilities can more effectively manage their energy portfolios. First, storage can dispatch power to better integrate intermittent resources like renewable energy. Second, it provides management of intermittent demand – helping to flatten peak demand requirements for the utility. Third, the responsiveness of energy storage can allow the utility to implement voltage regulation and other ancillary services, useful for improving system efficiency. Finally, energy storage can help the commercial sector avoid costly “demand charges.” As utilities around the country consider extending demand charges to the residential sector, this will become an even more important issue.

Storage provides multiple benefits to both the customer and the utility. State planning and regulatory policies can help maximize these benefits through a combination of 1) establishing a framework for easy integration of energy storage into the grid and 2) establishing a marketplace that monetizes the benefits of energy storage for cost effective investment.

Colorado does not have a procurement target or goal for energy storage. The state’s incentives and other policy supportive of energy storage are an area for improvement. However, Colorado has a strong set of policies for rooftop solar and wind, which, combined with a move toward time of use rates, creates a good foundation for storage as a distributed energy technology.

1. Instruct the utilities commission to evaluate the value of energy storage in multiple strategic locations across the utility system and consider a requirement to deploy storage where it will be cost effective, or identify the price point at which it will become cost effective. A bill introduced this year would have done something similar. HB 17-1299, defeated in the Senate, would have “[directed] the transportation legislation review committee (TLRC) to conduct a hearing during the 2017 interim on the potential economic benefits and costs of energy storage systems (e.g., batteries, heat sinks, pumped storage hydroelectric systems) that an electric utility may incorporate into its electric resource acquisition plans.”

2. Require the inclusion of energy storage as a critical piece of the energy system as both a demand and supply management resource. Some states have required utilities to evaluate the cost effectiveness of “non-wires” alternatives (NWAs) to large generation investments that are more traditional utility avenues for meeting demand. Or, states may want to require utilities to develop a distribution investment plan that identifies the locations on the distribution system where energy storage or other distributed resources would offer the system the greatest value.

3. Provide incentives for customers to purchase storage to both manage their electric load and store locally produced renewable energy. Allow utilities that provide incentives to customers to install smart meters that enable dynamic energy management from multiple distributed battery systems. A bill introduced during the past legislative session would have provided protection to Coloradans who wished to install storage units in their home. The bill would have restricted additional charges that could be levied on the customers and ensured the interconnection approval process was comparable to the current process for rooftop solar systems. However, the bill (SB 17-089) was lost.

4. Adopt clear data access policies that allow third parties to provide energy management services based on signals from the utility to greatly increase the value of efforts to monetize the value stream offered by energy storage.

5. Provide an option for utility customers (targeted at commercial users) to pay an additional charge to be included in a “high reliability zone” created through a combination of distributed generation and energy storage – forming a utility integrated “microgrid”.

6. Provide financing for commercial businesses to install energy storage to reduce their demand charges.

7. Incentivize energy storage. Policymakers may want to start first with a policy to incentivize those who have solar systems, along with a utility incentive that will allow the utility to maximize the benefit of solar by
aligning solar resources with peak load. Colorado’s RESA (Renewable Energy Standard Adjustment) may be able to be used to provide incentives for energy storage. Also, with the activation of TABOR surpluses in the state, tax credits may be a way an attractive way to lower state revenues while targeting incentives toward energy storage.

2017 Energy-Related Legislation Introduced by Attendees

<table>
<thead>
<tr>
<th>Bill Number</th>
<th>Bill Summary</th>
<th>Bill Status</th>
<th>Sponsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>HB 17-1257</td>
<td>The bill continues indefinitely reporting requirements of the department of natural resources that were scheduled to repeal according to section 24-1-136 (11)(a)(f).</td>
<td>Enacted</td>
<td>Arndt</td>
</tr>
<tr>
<td>HB 17-1299</td>
<td>The bill directs the transportation legislation review committee (TLRC) to conduct a hearing during the 2017 interim on the potential economic benefits and costs of energy storage systems (e.g., batteries, heat sinks, pumped storage hydroelectric systems) that an electric utility may incorporate into its electric resource acquisition plans.</td>
<td>Postponed Indefinitely</td>
<td>Arndt</td>
</tr>
<tr>
<td>HB 17-1339</td>
<td>The bill, known as the 'Colorado Energy Impact Assistance Act', authorizes any investor-owned electric utility (utility) to apply to the public utilities commission (PUC) for a financing order that will authorize the utility to issue low-cost Colorado energy impact assistance bonds (bonds) to lower the cost to electric utility customers (ratepayers) when the retirement of a power plant occurs.</td>
<td>Postponed Indefinitely</td>
<td>Arndt</td>
</tr>
<tr>
<td>HB 17-1363</td>
<td>Current law authorizes a homeowner to finance certain energy efficiency improvements to the home through a loan pursuant to the property assessed clean energy (PACE) program. The program requires an applicant to file a title commitment on the home and a hearing must be held in order to seek a voluntary subordination of existing liens to the program’s junior lien. The bill exempts a homeowner from the title commitment and hearing requirements if the owner or lender is not seeking to subordinate the priority of existing liens.</td>
<td>Enacted</td>
<td>Arndt</td>
</tr>
<tr>
<td>HB 17-1366</td>
<td>The bill requires: the state climate action plan to include specific, measurable goals, the achievement of which will both reduce Colorado’s greenhouse gas emissions and increase Colorado’s adaptive capability to respond to climate change, along with associated near-term, mid-term, and long-term deadlines to achieve the goals; and the annual climate report to the general assembly to include an analysis of the progress made in meeting the measurable goals and deadlines specified in the plan.</td>
<td>Postponed Indefinitely</td>
<td>Arndt</td>
</tr>
<tr>
<td>HB 17-1256</td>
<td>As part of the Colorado oil and gas conservation commission’s (commission) authority to regulate oil and gas operations to prevent and mitigate significant adverse environmental impacts to protect public health, safety, and welfare, the commission requires oil and gas production facilities and wells to be located at least 1,000 feet from school buildings and other high occupancy buildings. The bill clarifies that the minimum 1,000-foot distance from which newly permitted production facilities and wells must be located from any school applies to the school property line and not the school building. The bill further clarifies that it does not apply if a school commences operations near production facilities or wells that are already actively in use or permitted and, with respect to property owned by a school district, the distance requirement applies to the school building, other facilities used for school activities, and real property on which a future permanent or temporary school building is planned within 5 years after a production facility application is filed.</td>
<td>Postponed Indefinitely</td>
<td>Foote</td>
</tr>
<tr>
<td>HB 17-1336</td>
<td>Adds additional protections for interest owners subject to a forced pooling order.</td>
<td>Postponed Indefinitely</td>
<td>Foote</td>
</tr>
<tr>
<td>Bill Number</td>
<td>Bill Summary</td>
<td>Bill Status</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>SB 17-145</td>
<td>The bill directs specified electric utilities to prepare, and the Colorado public utilities commission to review, proposals to integrate distributed energy resources into their plans to acquire new infrastructure. 'Distributed energy resources' is defined to include renewable distributed generation facilities, such as rooftop solar, energy storage facilities, electric vehicles, and other features of an improved and diversified electrical grid architecture. The commission may approve the plans as submitted or modify them in ways that improve system reliability, reduce costs, or increase the benefits to ratepayers.</td>
<td>Introduced Foote</td>
<td></td>
</tr>
<tr>
<td>SJM 17-005</td>
<td>Asks Congress to phase out over five years the value of tax subsidies for the oil and gas and coal industries, so that it is the same as the phase out of, or gradual step down of, tax subsidies for renewable energy.</td>
<td>Postponed Indefinitely Foote</td>
<td></td>
</tr>
<tr>
<td>HB 17-1227</td>
<td>The bill extends the [demand-side management goals] to 2028 and requires the commission to set goals of at least 5% peak demand reduction and 5% energy savings by 2028 for demand-side management programs implemented during 2019 through 2028 when compared to 2018 numbers.</td>
<td>Enacted Priola</td>
<td></td>
</tr>
<tr>
<td>HB 17-1232</td>
<td>In an existing provision that authorizes resellers of electricity and natural gas to provide motor vehicle charging or fueling stations as unregulated services, the bill authorizes public utilities to provide these services as regulated or unregulated services and allows cost recovery. The bill allows a utility to apply to build facilities to support alternative fuel vehicles. Standards are set for approval. When a facility is built, the rate and charges for the services: May allow a return on any investment made by an electric public utility at the weighted average cost of capital at the electric public utility's most recent rate of return on equity approved by the public utilities commission (commission); May allow a return on any investment made by a natural gas public utility at the utility's weighted average cost of capital at the public utility's most recent rate of return on equity approved by the commission; and Must be recovered from all customers of an electric or natural gas public utility in a manner that is similar to the recovery of distribution system investments.</td>
<td>Postponed Indefinitely Priola</td>
<td></td>
</tr>
</tbody>
</table>

Other 2017 Energy-Related Legislative Activity

Only bills that have passed both chambers are set out below. For all 2017 energy-related legislation, visit aeltracker.org.

<table>
<thead>
<tr>
<th>Bill Number</th>
<th>Bill Summary</th>
<th>Bill Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>HB 17-1016</td>
<td>The bill permits the governing body of a municipality, as applicable, to provide in an urban renewal plan that the valuation attributable to the extraction of mineral resources located within the urban renewal area is not subject to the division of taxes between base and incremental revenues that accompanies the tax increment financing of urban renewal projects. In such circumstances, the taxes levied on the valuation will be distributed to the public bodies as if the urban renewal plan was not in effect.</td>
<td>Enacted</td>
</tr>
<tr>
<td>HB 17-1090</td>
<td>A qualified investor who, prior to January 1, 2018, makes an equity investment in a qualified small business from an advanced industry is allowed an income tax credit that is equal to a percentage of the investment, up to a maximum credit of $50,000. The Colorado office of economic development (office) determines the eligibility for the tax credits and issues nontransferable tax credit certificates that are used to claim the credit. The maximum amount of tax credits allowed for a calendar year is $750,000. The bill extends the credit by allowing qualified investments made on or after January 1, 2018, but prior to January 1, 2023, to qualify for the tax credit.</td>
<td>Enacted</td>
</tr>
<tr>
<td>HB 17-1116</td>
<td>Current law provides that the department of human services low-income energy assistance fund, the energy outreach Colorado low-income energy assistance fund, and the Colorado energy office low-income energy assistance fund receive conditional</td>
<td>Enacted</td>
</tr>
</tbody>
</table>
funding from the severance tax operational fund through the state fiscal year commencing July 1, 2018. The bill extends the conditional funding through the state fiscal year commencing July 1, 2023.

SB 17-105 Sets out billing requirements for investor-owned utilities. Enacted

SB 17-179 The bill extends the repeal date of existing laws that limit the amount of permit, plan review, or other fees that counties, municipalities, or the state may charge for installing solar energy devices or systems. The bill also clarifies that the statutory limitations on the amount of fees applies to any related or associated fees, not just to permit or plan review fees. Enacted

SB 17-213 The bill declares that the regulation of automated driving systems is a matter of statewide concern, and, therefore, local authorities are prohibited from setting different standards for these systems than for human drivers. The use of automated driving systems is authorized if the system is capable of conforming to every state and federal law applying to driving. If not, a person testing a system is required to obtain approval from the Colorado state patrol and department of transportation. Enacted

SB 17-252 Current law allows boards of political subdivisions to enter into energy cost-savings contracts for utility cost savings. Utility cost savings are defined in law to include an installation, modification, or service that is designed to reduce energy consumption and related operating costs in buildings and other facilities. The bill specifies that the boards may also enter into energy cost-savings contracts for increasing meter accuracy, which is defined as a utility cost-savings measure. The bill also changes the definition of ‘operation and maintenance cost savings’ to clarify that the calculation must be made on a net basis. Enacted

SB 17-271 The bill requires the public utilities commission (commission) to open a nonadjudicatory proceeding to evaluate investor-owned gas or electric utilities' policies and procedures for load extension of service, including allocation of costs and identification of variables that affect construction and implementation time lines for extension of service. Gas-only investor-owned utilities are not subject to the commission's nonadjudicatory proceeding. Upon completion of its evaluation, the commission shall issue a decision containing recommendations for investor-owned utilities' implementation of service extension. Within 90 days after the conclusion of the commission's nonadjudicatory proceeding, the commission may promulgate rules consistent with its findings. Enacted

SB 17-278 The bill prohibits engaging in a nuisance exhibition of motor vehicle exhaust... A person who violates the prohibition commits a class A traffic infraction, punishable by a fine of $100. Enacted

News
- June 20th, 2017: Special Funding Request Denied for Colorado Energy Office.
- June 9th, 2017: Why a Denver Company is Buying Encana’s Western Colorado Natural Gas Assets for $735M.

Other Resources
- Economic Development Impacts of Wind Projects: http://awea.files.cms-plus.com/Economic%20Development%20Impacts%20of%20Wind%20Projects%202017%20FINAL.pdf
- The Database of State Incentives for Renewables and Efficiency, Colorado: http://programs.dsireusa.org/system/program?fromSir=0&state=CO
- U.S. Energy Information Administration, Colorado: https://www.eia.gov/electricity/state/colorado/
- SPOT for Clean Energy, Colorado: https://spotforcleanenergy.org/state/colorado/