State Brief: Nevada

Background

Nevada currently receives nearly 90% of its energy from out-of-state, much of which is natural gas. The state is a national leader in solar and geothermal energy: In 2015, Nevada ranked 2nd in the U.S. for utility scale net electricity generation from geothermal sources and 5th for solar energy.

Nevada's current renewable portfolio standard (RPS) calls for 25% renewable energy by 2025 with a 6% solar carve-out. NV Energy reported early in 2017 that it is on track to exceed this mandate. In fact, NV Energy reported a 22.2% renewable credit level in southern Nevada and a 26.6% in northern Nevada in 2016.

Joe Reynolds chairs Nevada's bi-partisan, three-member Public Utilities Commission (PUCN). Democratic majorities control both chambers of the State Legislature. Governor Brian Sandoval is a Republican. The state’s 2017 legislative session adjourned on June 6th.

Nevada is currently in the national spotlight as the result of several energy bills passed by the State Legislature (see table below). Nevada also made headlines in 2015 and 2016 when MGM Resorts and Wynn Resorts, and later Caesars Entertainment Corps, left NV Energy as their primary energy provider. In the fall of 2016, voters approved Question 3, which would establish and open electric energy market in the state. While the measure passed by a substantial margin, voters must also approve it on the 2018 ballot and the measure will require additional legislative action before becoming law. In April, Governor Sandoval announced the members of the Committee on Energy Choice. The Committee will be tasked with developing policy proposals if voters approve the Energy Choice initiative in 2018.

During the 2017 Legislative session, Governor Sandoval vetoed Assembly Bill 206, which would have increased the state's RPS to 40% renewables by 2030. After the veto, he explained his decision in a statement, saying that “although the increase in the RPS proposed at this time in AB 206 is one that I would otherwise support, the consequences of approving this bill must be considered through the lens of recent changes to Nevada energy policy and those likely to be adopted in the near future. These changes can only be characterized as massive shifts in energy policy that have already dramatically altered the energy landscape in Nevada. They are occurring in real time, with energy policy evolving in real time.” Additionally, Governor Sandoval pledged: “To achieve the goals set forth in AB 206, and to respond to the concerns raised in this veto message, I will amend my executive order regarding the Committee on Energy Choice to direct it to study, review and discuss an increased RPS in the face of energy choice and make recommendations to me and the 2019 Legislature.”

Nevada's Energy Mix

| Source | Natural Gas: 74.3% | Petroleum: 0.04% | Solar: 4.2% | Biomass: 0.1% | Wind: 0.8% | Other: 0.003% | Coal: 6.8% | Geothermal: 8% | Hydroelectric: 5.8% |

Source: EIA
Policy Strengths and Opportunities

An important framework for policymakers to consider, the notion of “policy stacking” was developed at the National Renewable Energy Laboratory (NREL). The basic idea behind policy stacking is that there is an interdependency and a sequencing of state policy that, when done effectively, can yield greater market certainty, private sector investment, and likelihood of achieving stated public policy objectives.

In theory, but not always in practice, clean energy policies can be categorized into one of three tiers of the policy stack. Tier 1, Market Preparation Policies, remove technical, legal, regulatory, and infrastructure-related barriers to clean energy technology adoption. Tier 2, Market Creation Policies, create a market and/or signal state support for clean energy technologies. Tier 3, Market Expansion Policies, create incentives and other programs in order to expand an existing clean energy market by encouraging or facilitating technology uptake by additional market participants.

A simple example, before financial incentives for combined heat and power (CHP) will be successful, two key considerations for deployment are having clear interconnection standards and favorable stand-by rates for customers who opt to add CHP. In this example, policies to address interconnection and stand-by rates should be adopted before financial incentive programs are implemented.

Energy Storage

Energy storage offers a unique opportunity to dynamically manage supply and demand to maximize the value of grid resources. By deploying storage in strategic locations, utilities can more effectively manage their energy portfolios. First, storage can dispatch power to better integrate intermittent resources like renewable energy. Second, it provides management of intermittent demand – helping to flatten peak demand requirements for the utility. Third, the responsiveness of energy storage can allow the utility to implement voltage regulation and other ancillary services, useful for improving system efficiency. Finally, energy storage can help the commercial sector avoid costly “demand charges.” As utilities around the country consider extending demand charges to the residential sector, this will become an even more important issue.

Storage provides multiple benefits to both the customer and the utility. State planning and regulatory policies can help maximize these benefits through a combination of 1) establishing a framework for easy integration of energy storage into the grid, and 2) establishing a marketplace that monetizes the benefits of energy storage for cost effective investment.

Nevada is the home to the Tesla Gigafactory and has a unique opportunity to work with the battery manufacturer to support storage as a distributed energy technology. Combined with smart meters, distributed battery storage offers benefits for both the customer and the utility. Policymakers may find it is in the state’s best interests, both short and long term, to bolster this growing industry through incentives. Some states require that energy storage be a component of their utility integrated resource plans (IRPs) and credit renewable energy storage with a multiplier under the renewable portfolio standard.

There are several opportunities for developing supportive state policies:

1. Instruct the utilities commission to evaluate the value of energy storage in multiple strategic locations across the utility system and consider a requirement to deploy storage where it will be cost effective, or identify the price point at which it will become cost effective. Nevada is making progress on this front, as

1 For more information on policy opportunities, please visit the SPOT for Clean Energy. For more information on specific policy actions related to these opportunities, please review the Clean Energy Policy Guide for State Legislatures.

Senate Bill 204, enacted July 2017, directs the PUCN “to investigate and establish a requirement for certain electric utilities to procure energy storage systems if certain criteria are satisfied.” A recommendation for the purchase of energy storage by utilities will be made by October 2018.

2. Require the inclusion of energy storage as a critical piece of the energy system as both a demand and supply management resource. Some states have required utilities to evaluate the cost effectiveness of “non-wires” alternatives (NWAs) to large generation investments that are more traditional utility avenues for meeting demand. Or, states may want to require utilities to develop a distribution investment plan that identifies the locations on the distribution system where energy storage or other distributed resources would offer the system the greatest value.

3. Provide incentives for customers to purchase storage to both manage their electric load and store locally produced renewable energy. Allow utilities that provide incentives to customers to install smart meters that enable dynamic energy management from multiple distributed battery systems.

4. Adopt clear data access policies that allow third parties to provide energy management services based on signals from the utility to greatly increase the value of efforts to monetize the value stream offered by energy storage.

5. Provide an option for utility customers (targeted at commercial users) to pay an additional charge to be included in a “high reliability zone” created through a combination of distributed generation and energy storage – forming a utility integrated “microgrid”.

6. Provide financing for commercial businesses to install energy storage to reduce their demand charges.

7. Incentivize energy storage. Policymakers may want to start first with a policy to incentivize those who have solar systems, along with a utility incentive that will allow the utility to maximize the benefit of solar by aligning solar resources with peak load.

Clean Energy Financing

Distributed generation (DG) provides localized generation that serves a specific part of the grid. It may include generation serving a specific residence or business, a neighborhood, or a region served by a substation. DG has the benefit of reducing stress on large transmission infrastructure by providing distribution level power (as opposed to central generation). Because small-scale renewable energy systems require large upfront investments, overcoming the upfront cost barrier is arguably the biggest challenge to clean energy deployment at the consumer level. Financing is key; and many states provide financing and financial incentives to spur adoption of these technologies.

Financing encompasses multiple potential state initiatives including green banks, credit wraps, interest rate buy downs, and other common financing instruments. To promote wide-spread deployment of DG, there are a handful of policy opportunities in Nevada.

1. Property Assessed Clean Energy (PACE) – PACE is a financing mechanism used by local governments that allows property owners to finance energy efficiency and renewable energy improvements through their property tax payment. The repayment of qualified energy improvements is done via a voluntary property tax assessment collected by local governments, just as other public infrastructure investments are financed. While PACE programs can be designed for both the residential and the commercial markets, residential PACE takes a much more committed and engaged approach on the part of the state. While Nevada has passed PACE enabling legislatng, no active programs exist in the state. In order to amend the state’s existing residential PACE authorization, legislation might follow the Department of Housing and Urban Development’s (HUD) guidance for determining eligibility for Federal Housing Authority (FHA) insured mortgage financing:
 a. Collection: The PACE obligation is collected and secured by the creditor in the same manner as a special assessment against the property;
b. Enforcement: The property may only become subject to an enforceable claim (i.e. a lien) that is superior to the mortgage for delinquent regularly scheduled PACE payments. The property shall not be subject to an enforceable claim superior to the mortgage for the full outstanding PACE obligation at any time;

c. Property Transfer: There are no terms or conditions that limit the transfer of the property to a new homeowner. Provisions to require the consent of a third-party prior to conveyance are prohibited, unless these provisions can be terminated at the option of, and with no cost to, the homeowner;

d. Disclosure: The existence of a PACE obligation on a property is readily apparent to all parties to an FHA-insured mortgage transaction in the public records and must show the obligation amount, the expiration date and cause of the expiration of the assessment, and in no case, can default accelerate the expiration date.

2. Innovative Financing Policies – This is an umbrella policy category that covers any mechanism to reduce the upfront cost of clean energy technologies for customers, and includes the following:

 a. Green/Infrastructure Bank – At its essence, a green bank blends public and private capital to fund the upfront cost of clean energy improvements. The Nevada Governor’s Office of Energy has worked with the Coalition for Green Capital to investigate introducing a green bank, and in June 2017 the Governor signed Senate Bill 407 and authorized the creation of the Nevada Clean Energy Fund, essentially a green bank intended to increase the deployment of clean energy technologies statewide.

 b. Loan Loss Reserve - These funds are a credit enhancement or credit wrap in which a percentage of a program or project (for example, 10% of loan recipients or 10% of the principal) is held in reserve and only drawn in event of a default. These programs are used to leverage or reduce risk of private capital investment in clean energy projects and can support development of numerous clean energy finance tools, including on-bill financing and revolving loan funds.

 c. Revolving Loan Funds – The distinguishing characteristic of these public funds is that they are evergreen in the sense that the repaid principal and interest from loans made are re-issued to other loan recipients. In this way, the program funding “revolves” over time. Nevada has existing revolving loan funds through the Governor’s Office of Energy.

 d. Securitization, in this context, is borrowing against future ratepayer contributions into a public benefits fund. Perhaps the best example of a state securitization program is the Hawaii Green Energy Market Securitization (GEMS) program, which makes low cost capital available to a broad range of participants including renters and lower credit score borrowers.

3. DG and Solar Incentives – Nevada offers tax credits for solar and other DG technologies. To increase the deployment of DG, the state’s offerings could be expanded to include performance-based incentives and loans. A performance-based incentive may take the form of a power purchase agreement, a standard offer payment, or a bill credit providing a certain dollar amount per kilowatt-hour (kWh) of power generated. By providing low interest financing to an individual utility customer, the state can shift the upfront payment for generation to one that reflects typical utility costs – a monthly payment over time. In addition, through the 2009 American Recovery and Reinvestment Act, states were provided with low interest bond financing for renewable energy and energy efficiency projects through Qualified Energy Conservation Bonds (QECBs). These may still be available, as it appears that Nevada’s allocation was not fully used.

Grid Modernization

In the last two decades, digital technologies have been developed that enable utilities to better manage the grid and also provide opportunities for consumers to customize their services to fit their priorities. These technologies allow a two-way flow of information between the electric grid and grid operators and between utilities and their customers. Emerging technologies improve system reliability and resiliency by enabling better tracking and management of resources.
These technologies allow grid operators to incorporate central and distributed energy resources, energy storage technologies, electric vehicles, and assist in addressing the challenges associated with planning, congestion, asset utilization, and energy and system efficiency. This can make the operational side of the utility more efficient. On the customer’s side of the meter, advanced metering infrastructure, dynamic pricing, and other emerging technologies allow an exchange of information and electricity between a consumer and their electric provider. Grid modernization will be associated with greater consumer choice, allowing customers to meet their energy priorities by producing their own energy or to selecting to receive innovative energy efficient or clean energy services from different providers.

Grid modernization efforts compliment other policies such as demand response policies, customer data management, smart metering infrastructure, electric vehicles, and others. Policy approaches around grid modernization should be seen as an umbrella to put in place a structure that supports and ties together these other individual policy initiatives.

Nevada has laid a solid foundation for advancing grid modernization efforts in the state. In Clean Energy’s latest Grid Modernization Index, Nevada was ranked 14th overall and performed exceptionally well in the "Customer Engagement" category. Enacted in May, Senate Bill 145 requires utilities to develop a grid modernization plan and there are additional policy opportunities to advance in-state grid modernization efforts:

1. The technologies associated with grid modernization generate a wealth of information about the grid itself and about customer behavior. Include measures to protect this data, but also encourage the use of this information to facilitate additional improvements to grid management and customer services. Presently, there are no clear state policies governing customer data access and privacy protections. Important aspects of legislation or rules addressing this include the following: clarification of who owns the energy data associated with consumer energy usage; protections for customer privacy; an outline of the process for allowing third parties direct access to data; and policy to promote access to the highest resolution of data by third parties. The state could establish customer access to energy data through the Green Button Connect program, for example.

2. Develop a strategy through a stakeholder process that incorporates the viewpoints of utility customers, utilities regulators, utilities, and other stakeholders.

3. Develop strategies and / or plans to outline a clear set of grid modernization goals and describe methods to measure, report, verify, and enforce progress towards those goals. Grid modernization plans and strategies should incorporate consideration of the impacts of electric vehicles on the grid.

4. Provide incentives or cost recovery mechanisms for utilities to meet grid modernization goals and consider policies to update utility business models and utility regulation.

5. Require that utilities’ integrated resource plans include plans to enhance cybersecurity, integrate distributed energy resources (including electric vehicles and energy storage), increase demand response and/or demand-side management (DSM) programs, and measure and report on the results of grid modernization efforts.

6. Improve the state’s energy storage policies. The adoption of incentives for or a mandate to integrate a certain amount of energy storage on the grid (see above) would enhance modernization efforts. Enhancing clean energy financing (above) and electric vehicle policies (below), also improves the chances of successful grid modernization.

Electrification of the Transportation Sector

One of the most important barriers to increased adoption of electric vehicles (EVs) is their higher up-front cost as compared to a similar conventionally-fueled vehicle. In addition, there has been a complicated relationship between increased adoption of EVs and the availability of EV charging stations. Put simply, consumers want to be sure their car will get them where they need to go. The good news is that both
supportive policies for developing charging infrastructure and technological advancements have eased “range anxiety.” For instance, the most recent GM Bolt has an estimated range of 240 miles.

Nevada’s NV Energy offers discounted electricity rates to residential customers in their Northern and Southern Service Territories who charge Plug-In Electric Vehicles (PEVs) during off-peak hours. NV Energy and Valley Electric Association also partnered with the Nevada Governor’s Office of Energy on the Nevada Electric Highway, an initiative to expand the state’s electric vehicle charging infrastructure.

There are several policy opportunities to further encourage and prepare for increased market penetration of EVs in the state, including:

1. Charging Infrastructure Plan – Locating charging infrastructure is different than locating conventional fueling stations. For the most part, EVs are cars used for commuting and local trips. Furthermore, while one fuels a conventional vehicle when they are going somewhere, stopping at a gas station for the specific purpose of filling up, a driver of an EV is generally looking to refuel when they are stopping somewhere: when going shopping, going into a restaurant, or going to work. Charging infrastructure plans should target these types of locations and attempt to pair the appropriate level of charging infrastructure with a reasonable amount of time a person may be stopped at that location.

2. EVSE Financing and Financial Incentives – The provision of financial incentives and innovative financing options can increase installations of charging stations. States have adopted a number of financial incentives including income and property tax credits, sales tax credits, low-interest loans, grants, and rebates. A handful of states qualify EV charging stations under their property assessed clean energy (PACE) programs. One of the simpler solutions, existing tax credits could be increased and expanded to incentivize commercial, publicly available charging stations.

3. EV Financing and Financial Incentives – The provision of financial incentives and innovative financing options can help spur greater market penetration of EVs. Sales and income tax credits are one of the simplest methods for addressing higher up-front costs. While sales tax credits are typically applied at the time of purchase, income tax credits may do less to address the upfront cost barrier as receipt of the credit is typically removed in time from the purchase. However, a study by the Congressional Budget Office suggests that tax credits are important tools for ensuring increased adoption of alternative-fueled vehicles. States have adopted a number of other financial incentives including low-interest loans, grants, vouchers, and rebates.

4. Building Standards and Codes – Many states and local governments are updating building standards and codes to provide guidance and standards for the installation of charging equipment. Building codes might also be updated to require either higher voltage pre-wiring or the installation of charging infrastructure.

5. Parking Infrastructure Requirements – Some states have adopted permitting standards for parking lots, requiring, for instance, that for every 100 parking spaces, one EV charging spot must be provided. States have also passed Anti-ICEing Legislation. “ICEing” occurs when an internal combustion engine (ICE) car is parked in an EV Only parking space. Some states have passed laws establishing penalties for non-EVs parking in EV only parking spots.

6. Rental Properties and HOAs – Legislation can also make it easier for lessees, renters, and members of a home-owners association (HOA) to install charging equipment. Typically, lessors are directed to allow lessees, at their own cost, to install charging systems. In some cases, lessees are required to maintain additional insurance for the system. Legislation related to HOAs typically directs Associations to avoid restrictions that would inhibit the installation of charging equipment.

2017 Energy-Related Legislation Introduced by Attendees

<table>
<thead>
<tr>
<th>Bill Number</th>
<th>Bill Summary</th>
<th>Bill Status</th>
<th>Sponsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB 17-159</td>
<td>Prohibits hydraulic fracturing, with some exceptions, in Nevada.</td>
<td>Passed Assembly</td>
<td>Brooks</td>
</tr>
<tr>
<td>Bill Number</td>
<td>Description</td>
<td>Status</td>
<td>Sponsor</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>AB 17-206</td>
<td>Authorizes PUCN to allow utilities to establish programs to provide retail customers the option to purchase electricity from a renewable energy facility owned by the utility or with which the utility has a contract for the purchase of electricity. The bill also authorizes PUCN to allow utilities to exclude a renewable energy facility owned by the electric utility from the rate base of the utility; and to determine a reasonable rate for the electricity generated by the renewable energy facility. The bill increases Nevada's Energy Portfolio Standard from 25% by 2025 to 40% by 2030, and makes other revisions to the EPS, including allowing energy storage to be used for compliance. Lastly, the bill makes changes to planning requirements, prohibiting PUCN from rejecting any portion of a utility plan that includes a new renewable energy contract or the construction or acquisition of a new renewable energy facility for the purpose of complying with the utility's portfolio standard solely on the grounds of any uncertainty relating to the energy choice ballot question.</td>
<td>Vetoed</td>
<td>Brooks</td>
</tr>
<tr>
<td>AB 17-270</td>
<td>Generally, this bill provides that each electric utility is required to offer net metering to customer-generators operating in the service territory of the utility under the tariffs, rates and charges in effect before the passage of S.B. 374, except that section 2 of this bill provides that if the customer-generator is billed pursuant to a time-of-use rate schedule, any excess electricity carried forward is added first to the time-of-use period with the highest rate before the excess electricity is added to any remaining time-of-use periods with lower rates.</td>
<td>Introduced</td>
<td>Brooks</td>
</tr>
<tr>
<td>AB 17-405</td>
<td>Amends provisions relating to third-party financing and updates the state's net metering policy.</td>
<td>Enacted</td>
<td>Brooks</td>
</tr>
<tr>
<td>AB 17-223</td>
<td>Requires that utilities include, in their Integrated Resource Plans, “a proposal for the expenditure of not less than 5 percent of the total expenditures related to energy efficiency and conservation programs on programs directed to low-income customers of the electric utility. Section 8 of this bill authorizes the Commission to accept an energy efficiency plan that consists of energy efficiency programs and energy efficiency and conservation programs that are not cost effective if the energy efficiency plan as a whole is cost effective according to the definition of “cost effective” set forth in section 3 of this bill...”</td>
<td>Enacted</td>
<td>Brooks</td>
</tr>
<tr>
<td>AB 17-277</td>
<td>Revises provisions related to land use planning; for the purposes of environmental impact statements, includes renewable energy development as a “significant beneficial environmental impact.”</td>
<td>Vetoed</td>
<td>Brooks</td>
</tr>
<tr>
<td>AJR 17-10</td>
<td>Expresses opposition to the development of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in the State of Nevada.</td>
<td>Passed Assembly</td>
<td>Brooks</td>
</tr>
<tr>
<td>SB 17-145</td>
<td>Existing law establishes the Solar Energy Systems Incentive Program, the Wind Energy Systems Demonstration Program and the Waterpower Energy Systems Demonstration Program. Existing law further establishes the amount of incentives that may be authorized for payment by the Public Utilities Commission of Nevada to each Program...Section 1.5 of this bill combines the amount of existing incentives available for payment to each Program into a single pool of money from which the Commission may authorize the payment of an incentive to a Program. Section 1.5 further requires the Commission, for the period beginning on January 1, 2018, and ending on December 31, 2023, to authorize the payment of incentives in an amount of not</td>
<td>Enacted</td>
<td>Spearman</td>
</tr>
</tbody>
</table>
more than $1,000,000 per year for the installation of solar energy systems and distributed generation systems at locations throughout the service territories of electric utilities in this State that benefit low-income customers...Sections 1.2 and 1.3 of this bill require the Commission to establish, as part of the Solar Energy Systems Incentive Program, incentives for: (1) the installation of energy storage systems by a customer of an electric utility; and (2) the installation of energy storage systems that have a nameplate capacity of at least 100 kilowatts but not more than 1,000 kilowatts by certain customers of an electric utility. Section 1.4 of this bill: (1) creates the Electric Vehicle Infrastructure Demonstration Program; (2) requires the Commission to adopt regulations concerning the Program; and (3) authorizes each utility to recover the costs of carrying out the Program.

SB 17-146
Section 1 of this bill also requires an electric utility to submit to the Commission, on or before July 1, 2018, a distributed resources plan as part of the plan to increase its supply or decrease the demands on its system.

SB 17-150
Section 10 requires the Commission to establish goals for energy savings for each electric utility for each calendar year. Section 10 also requires each electric utility to implement an energy efficiency plan which is cost effective and designed to meet the goals for energy savings established by the Commission. Section 10 further requires that at least 5 percent of the expenditures related to energy efficiency programs must be directed toward low-income customers of the electric utility. Section 12 of this bill revises existing law relating to the recovery of costs based on the implementation by an electric utility of energy efficiency and conservation programs to authorize the Commission to remove financial disincentives which discourage an electric utility from implementing or promoting participation in such programs by including a rate adjustment mechanism to ensure that the revenue per customer authorized in a general rate application is recovered without regard to the difference in the quantity of electricity actually sold by the electric utility.

SB 17-204
This bill requires the Public Utilities Commission of Nevada to investigate and determine, on or before October 1, 2018, whether it is in the public interest to establish by regulation biennial targets for the procurement of energy storage systems by an electric utility. Under section 7, in making this determination, the Commission must consider whether energy storage systems will achieve certain purposes, including, without limitation: (1) the integration of renewable energy resources into the transmission and distribution grid; (2) the improvement in the reliability of the electric grid; (3) a reduction in the emission of greenhouse gases; and (4) certain other purposes. **Section 7** further provides that, in measuring the benefits and costs of energy storage systems, the Commission is required to consider all known and measurable benefits and costs, including, without limitation, certain benefits and costs listed in **section 7**. If the Commission determines that the benefits of the procurement of energy storage systems exceed the costs, **section 8** of this bill requires the Commission to establish by regulation biennial targets for the procurement of energy storage systems by an electric utility.
<table>
<thead>
<tr>
<th>Bill</th>
<th>Description</th>
<th>Status</th>
<th>Sponsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB 17-392</td>
<td>Existing law establishes the Solar Energy Systems Incentive Program, the Wind Energy Systems Demonstration Program and the Waterpower Energy Systems Demonstration Program. Existing law further establishes the amount of incentives that may be authorized for payment by the Public Utilities Commission of Nevada to each Program...Section 1 of this bill combines the amount of existing incentives available for payment to each Program into a single pool of money from which the Commission may authorize the payment of an incentive to a Program. Section 1 further requires the Commission, for the period beginning on January 1, 2018, and ending on December 31, 2023, to authorize the payment of incentives in an amount of not more than $1,000,000 per year for the installation of solar energy systems, community solar gardens and distributed generation systems at locations throughout the service territories of electric utilities in this State which benefit low-income and moderate-income customers. Section 2 of this bill authorizes that such incentives be made available to a participant for the installed cost of a community solar garden. Sections 4-15 of this bill enact provisions governing community solar gardens in this State.</td>
<td>Vetoed</td>
<td>Spearman</td>
</tr>
<tr>
<td>SB 17-395</td>
<td>Section 8 of this bill requires the [Nevada Commission on Homeland Security] to designate as critical infrastructure an entity, asset or system that is so vital that the incapacity or destruction thereof would have a debilitating impact on the economy or security of this State or the public health and safety of the citizens of this State. Section 9 of this bill sets forth the certain considerations for the Commission when developing the requirements for cybersecurity plans. Section 10 of this bill requires each owner or operator of critical infrastructure to ensure that a cybersecurity plan for the critical infrastructure is developed and implemented. Section 10 also sets forth certain annual reporting requirements for an owner or operator of critical infrastructure.”</td>
<td>Introduced</td>
<td>Spearman</td>
</tr>
<tr>
<td>SB 17-407</td>
<td>This bill establishes the Nevada Clean Energy Fund to provide funding for and increase significantly the pace and amount of financing available for qualified clean energy projects in this State. Section 14 of this bill creates the Board of Directors of the Fund, whose responsibility it is to carry out the provisions of this bill. Section 16 of this bill sets forth certain duties of the Board relative to the responsibility of the Board to carry out the provisions of this bill.</td>
<td>Enacted</td>
<td>Spearman</td>
</tr>
<tr>
<td>SB 17-418</td>
<td>Use of VW settlement funds.</td>
<td>Passed Senate</td>
<td>Spearman</td>
</tr>
<tr>
<td>SCR 17-4</td>
<td>Directs the Legislative Commission to create an interim study concerning the development of renewable energy resources in this State.” (Not in AEL Tracker, Resolution)</td>
<td>Passed Senate</td>
<td>Spearman</td>
</tr>
<tr>
<td>AJR 17-10</td>
<td>Expresses opposition to the development of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in the State of Nevada. (Not in AEL Tracker, Resolution)</td>
<td>Effective May 23, 2017</td>
<td>Spearman</td>
</tr>
<tr>
<td>AB 17-206</td>
<td>Authorizes PUCN to allow utilities to establish programs to provide retail customers the option to purchase electricity from a renewable energy facility owned by the utility or with which the utility has a contract for the purchase of electricity. The bill also authorizes PUCN to allow utilities to exclude a renewable energy facility owned by the electric utility from the rate base of the utility; and to determine a reasonable rate for the electricity generated by the renewable energy facility.</td>
<td>Vetoed</td>
<td>Spearman</td>
</tr>
</tbody>
</table>
The bill increases Nevada’s Energy Portfolio Standard from 25% by 2025 to 40% by 2030, and makes other revisions to the EPS, including allowing energy storage to be used for compliance. Lastly, the bill makes changes to planning requirements, prohibiting PUCN from rejecting any portion of a utility plan that includes a new renewable energy contract or the construction or acquisition of a new renewable energy facility for the purpose of complying with the utility’s portfolio standard solely on the grounds of any uncertainty relating to the energy choice ballot question.

AB 17-405 Amends provisions relating to third-party financing and updates the state’s net metering policy.
Enacted
Spearman

Other 2017 Energy-Related Legislative Activity

Only bills that have passed both chambers are set out below. For all 2017 energy-related legislation, visit aeltracker.org.

<table>
<thead>
<tr>
<th>Bill Number</th>
<th>Bill Summary</th>
<th>Bill Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB 17-277</td>
<td>Revises provisions related to land use planning; for the purposes of environmental impact statements, includes renewable energy development as a “significant beneficial environmental impact.”</td>
<td>Vetoed</td>
</tr>
<tr>
<td>AB 17-452</td>
<td>An Act relating to energy; directing the Legislative Committee on Energy to conduct an interim study on energy choice; and providing other matters properly relating thereto.</td>
<td>Enacted</td>
</tr>
<tr>
<td>AB 17-69</td>
<td>An Act relating to transportation; revising requirements for the testing or operation of an autonomous vehicle on a highway within this State; authorizing the use of driver-assistive platooning technology; authorizing the use of a fully autonomous vehicle to provide transportation services in certain circumstances by persons licensed by the Department of Motor Vehicles, Nevada Transportation Authority or Taxicab Authority; providing for the regulation of autonomous vehicle network companies; providing penalties; and providing other matters properly relating thereto.</td>
<td>Enacted</td>
</tr>
<tr>
<td>SB 17-314</td>
<td>An Act relating to renewable energy; revising provisions concerning restrictions or requirements imposed by the governing body of a local government on the installation of a system for obtaining wind energy; specifying that a governing body is not precluded from denying the issuance of a permit for the installation of a system for obtaining wind energy based on a determination that installation of the system represents a danger to the health, safety or welfare of the public; and providing other matters properly relating thereto.</td>
<td>Enacted</td>
</tr>
<tr>
<td>SB 17-65</td>
<td>An Act relating to public utilities; requiring the Public Utilities Commission of Nevada to require certain utilities which supply electricity in this State to provide an overview of the utility’s resource plan or any amendment to the resource plan at least 4 months before filing the plan or within a reasonable period before filing the amendment; requiring the Commission to give preference to certain measures and sources of supply when determining the adequacy of a resource plan; and providing other matters properly relating thereto.</td>
<td>Enacted</td>
</tr>
</tbody>
</table>

News

- June 7th, 2017: [Nevada Just Became the Most Exciting State for Energy Storage Policy.](http://example.com)
- June 7th, 2017: [Solar Firms Plan to Return to Nevada After New Law Restores Incentives.](http://example.com)
- June 16th, 2017: [Nevada Governor Signs Net Metering Bill.](http://example.com)
Other Resources

- Nevada Governor’s Office of Energy: http://energy.nv.gov/
- The Database of State Incentives for Renewables and Efficiency, Nevada: http://programs.dsireusa.org/system/program?fromSir=0&state=NV
- U.S. Energy Information Administration, Nevada: https://www.eia.gov/state/?sid=NV
- SPOT for Clean Energy, Nevada: https://spotforcleanenergy.org/state/nevada/